Edit Paper: Accessing and Documenting Relational Databases through OWL Ontologies
You do not have permission to edit this page, for the following reason:
Access API | No data available now. + |
Event in series | FQAS + |
Has Benchmark | No data available now. + |
Has Challenges | No data available now. + |
Has DataCatalouge | {{{Catalogue}}} + |
Has Description | No data available now. + |
Has Dimensions | No data available now. + |
Has DocumentationURL | http://No data available now. + |
Has Downloadpage | http://No data available now. + |
Has Evaluation | No data available now. + |
Has EvaluationMethod | No data available now. + |
Has ExperimentSetup | No data available now. + |
Has GUI | No + |
Has Hypothesis | No data available now. + |
Has Implementation | ROSEX-SPARREW + |
Has InfoRepresentation | No data available now. + |
Has Limitations | No data available now. + |
Has NegativeAspects | No data available now. + |
Has PositiveAspects | No data available now. + |
Has Requirements | No data available now. + |
Has Results | No data available now. + |
Has Subproblem | No data available now. + |
Has Version | No data available now. + |
Has abstract | Relational databases have been designed to β¦ Relational databases have been designed to store high volumes of data and to provide an efficient query interface. Ontologies are geared towards capturing domain knowledge, annotations, and to offer high-level, machine-processable views of data and metadata. The complementary strengths and weaknesses of
as running examples throughout the paper. +these data models motivate the research effort we present in this paper. The goal of this work is to bridge the relational and ontological worlds, in order to leverage the efficiency and scalability of relational technologies and the high-level view of data and metadata proper of ontologies. The system we designed and developed achieves: (i) automatic ontology extraction from relational data sources and (ii) automatic query translation from SPARQL to SQL. Among the others, we focus on two main applications of this novel technology: (i) ontological publishing of relational data, and (ii) automatic relational schema annotation and documentation. The system has been designed and tested against real-life scenarios from Big Science projects, which are used as running examples throughout the paper. |
Has approach | No data available now. + |
Has authors | Carlo Curino +, Giorgio Orsi +, Emanuele Panigati + and Letizia Tanca + |
Has conclusion | In this paper, we presented a completely a β¦ In this paper, we presented a completely automated approach to map relational databases and ontologies. The system proposed is capable of extracting an ontological view of the relational schema, and to enable SPARQL access to the relational data source by means of a query rewriting mechanism. The same approach can be used to efficiently store relational ontologies on a RDBMS; moreover, the mapping we devised is completely based on OWL with no need to resort to a new formalism. The impact of this system has been discussed considering three main applications: (i) publishing of relational data in an ontological format, (ii) documentation of relational schemas by means of ontological annotations, and (iii) efficient relational storage for data-intensive ontologies. nal storage for data-intensive ontologies. + |
Has future work | No data available now. + |
Has motivation | No data available now. + |
Has platform | No data available now. + |
Has problem | Transforming Relational Databases into Semantic Web + |
Has relatedProblem | No data available now. + |
Has vendor | No data available now. + |
Has year | 2009 + |
ImplementedIn ProgLang | No data available now. + |
Proposes Algorithm | No data available now. + |
RunsOn OS | No data available now. + |
Title | Accessing and Documenting Relational Databases through OWL Ontologies + |
Uses Framework | No data available now. + |
Uses Methodology | No data available now. + |
Uses Toolbox | No data available now. + |