Difference between revisions of "DSAA 2018"

From Openresearch
Jump to: navigation, search
 
(5 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
|Acronym=DSAA 2018
 
|Acronym=DSAA 2018
 
|Title=5th IEEE International Conference on Data Science and Advanced Analytics
 
|Title=5th IEEE International Conference on Data Science and Advanced Analytics
 +
|Ordinal=5
 
|Series=DSAA
 
|Series=DSAA
 
|Type=Conference
 
|Type=Conference
Line 7: Line 8:
 
|End date=2018/10/03
 
|End date=2018/10/03
 
|Homepage=https://dsaa2018.isi.it/home
 
|Homepage=https://dsaa2018.isi.it/home
|City=Turin
+
|City=Torino
 
|Country=Italy
 
|Country=Italy
|Accepted papers=49
+
|Has coordinator=Laetitia Gauvin, Michele Tizzoni
 +
|has general chair=Francesco Bonchi, Foster Provost
 +
|has program chair=Tina Eliassi-Rad, Ciro Cattuto, Rayid Ghani
 +
|has tutorial chair=Gabriella Pasi, Richard De Veaux
 +
|Accepted papers=74
 
|has Proceedings Link=https://ieeexplore.ieee.org/xpl/conhome/8620128/proceeding
 
|has Proceedings Link=https://ieeexplore.ieee.org/xpl/conhome/8620128/proceeding
 
}}
 
}}
Line 15: Line 20:
 
Foundations
 
Foundations
  
 
 
 
  * Mathematical, probabilistic and statistical models and theories.
 
  * Mathematical, probabilistic and statistical models and theories.
 
  *    Machine learning theories, models and systems.
 
  *    Machine learning theories, models and systems.

Latest revision as of 15:50, 16 December 2020

DSAA 2018
5th IEEE International Conference on Data Science and Advanced Analytics
Ordinal 5
Event in series DSAA
Dates 2018/10/01 (iCal) - 2018/10/03
Homepage: https://dsaa2018.isi.it/home
Location
Location: Torino, Italy
Loading map...

Committees
Organizers: Laetitia Gauvin, Michele Tizzoni
General chairs: Francesco Bonchi, Foster Provost
PC chairs: Tina Eliassi-Rad, Ciro Cattuto, Rayid Ghani
Seminars Chair: Gabriella Pasi, Richard De Veaux
Table of Contents


Topics of interest include but are not limited to: Foundations

* Mathematical, probabilistic and statistical models and theories.
*     Machine learning theories, models and systems.
*     Knowledge discovery theories, models and systems.
*     Manifold and metric learning.
*     Deep learning and deep analytics.
*     Scalable analysis and learning.
*     Non-iid learning.
*     Heterogeneous data/information integration.
*     Data pre-processing, sampling and reduction.
*     Dimensionality reduction.
*     Feature selection, transformation and construction.
*     Large scale optimization.
*     High performance computing for data analytics.
*     Learning for streaming data.
*     Learning for structured and relational data.
*     Latent semantics and insight learning.
*     Mining multi-source and mixed-source information.
*     Mixed-type and structure data analytics.
*     Cross-media data analytics.
*     Big data visualization, modeling and analytics.
*     Multimedia/stream/text/visual analytics.
*     Relation, coupling, link and graph mining.
*     Personalization analytics and learning.
*     Web/online/social/network mining and learning.
*     Structure/group/community/network mining.
*     Cloud computing and service data analysis.
* 
* Management, storage, retrieval and search
* 
*     Cloud architectures and cloud computing.
*     Data warehouses and large-scale databases.
*     Memory, disk and cloud-based storage and analytics.
*     Distributed computing and parallel processing.
*     High performance computing and processing.
*     Information and knowledge retrieval, and semantic search.
*     Web/social/databases query and search.
*     Personalized search and recommendation.
*     Human-machine interaction and interfaces.
*     Crowdsourcing and collective intelligence.
* 
* Theoretical Foundations for Social issues
* 
*     Data science meets social science.
*     Security, trust and risk in big data.
*     Data integrity, matching and sharing.
*     Privacy and protection standards and policies.
*     Privacy preserving big data access/analytics.
*     Fairness and transparency in data science.