Difference between revisions of "Updating Relational Data via SPARQL/Update"

From Openresearch
Jump to: navigation, search
(Created page with "{{Paper |Title=Updating Relational Data via SPARQL/Update |Authors=Matthias Hert, Gerald Reif, Harald C. Gall, |Series=No data available now. |Year=No data available now. |Abs...")
(No difference)

Revision as of 12:03, 28 June 2018

Updating Relational Data via SPARQL/Update
Updating Relational Data via SPARQL/Update
Bibliographical Metadata
Year: No data available now.
Authors: Matthias Hert, Gerald Reif, Harald C. Gall
Venue No data available now.
Content Metadata
Problem: No data available now.
Approach: No data available now.
Implementation: No data available now.
Evaluation: No data available now.

Abstract

Relational Databases are used in most current enterprise environments to store and manage data. The semantics of the data is not explicitly encoded in the relational model, but implicitly on the application level. Ontologies and Semantic Web technologies provide explicit semantics that allows data to be shared and reused across application, enterprise, and community boundaries. Converting all relational data to RDF is often not feasible, therefore we adopt an ontology-based access to relational databases. While existing approaches focus on read-only access, we present our approach OntoAccess that adds ontology-based write access to relational data. OntoAccess consists of the update-aware RDB to RDF mapping language R3M and algorithms for translating SPARQL/Update operations to SQL. This paper presents the mapping language, the translation algorithms, and a prototype implementation of OntoAccess.

Conclusion

In this paper, we presented our approach OntoAccess that enables the manipulation of relational data via SPARQL/Update. We introduced the update-aware RDB to RDF mapping language R3M that captures additional information about the database schema, in particular about integrity constraints. This information enables the detection of update requests that are invalid from the RDB perspective. Such requests cannot be executed by the database engine as they would violate integrity constraints of the database schema. The information can also be exploited to provide semantically rich feedback to the client. Therefore, the causes for the rejection of a request and possible directions for improvement can be reported in an appropriate format.

Future work

Future work is planned for various aspects of OntoAccess. Further research needs to be done on bridging the conceptual gap between RDBs and the Semantic Web. Ontology- based write access to the relational data creates completely new challenges on this topic with respect to read-only approaches. The presence of schema constraints in the database can lead to the rejection of update requests that would otherwise be accepted by a native triple store. A feedback protocol that provides semantically rich information about the cause of a rejection and possible directions for improvement plays a major role in bridging the gap. Other database constraints such as assertions have to be evaluated as well to see if they can reasonably be supported in the mapping. Also, a more formal definition of the mapping language will be provided. Furthermore, we will extend our prototype implementation to support the SPARQL/Update MODIFY operation, SPARQL queries, and the just mentioned feedback protocol.

Approach

Positive Aspects: No data available now.

Negative Aspects: No data available now.

Limitations: No data available now.

Challenges: No data available now.

Proposes Algorithm: No data available now.

Methodology: No data available now.

Requirements: No data available now.

Limitations: No data available now.

Implementations

Download-page: No data available now.

Access API: No data available now.

Information Representation: No data available now.

Data Catalogue: {{{Catalogue}}}

Runs on OS: No data available now.

Vendor: No data available now.

Uses Framework: No data available now.

Has Documentation URL: No data available now.

Programming Language: No data available now.

Version: No data available now.

Platform: No data available now.

Toolbox: No data available now.

GUI: No

Research Problem

Subproblem of: No data available now.

RelatedProblem: No data available now.

Motivation: No data available now.

Evaluation

Experiment Setup: No data available now.

Evaluation Method : No data available now.

Hypothesis: No data available now.

Description: No data available now.

Dimensions: No data available now.

Benchmark used: No data available now.

Results: No data available now.

Access APINo data available now. +
Event in seriesEDBT/ICDT +
Has BenchmarkNo data available now. +
Has ChallengesNo data available now. +
Has DataCatalouge{{{Catalogue}}} +
Has DescriptionNo data available now. +
Has DimensionsNo data available now. +
Has DocumentationURLhttp://No data available now. +
Has Downloadpagehttp://No data available now. +
Has EvaluationNo data available now. +
Has EvaluationMethodNo data available now. +
Has ExperimentSetupNo data available now. +
Has GUINo +
Has HypothesisNo data available now. +
Has ImplementationNo data available now. +
Has InfoRepresentationNo data available now. +
Has LimitationsNo data available now. +
Has NegativeAspectsNo data available now. +
Has PositiveAspectsNo data available now. +
Has RequirementsNo data available now. +
Has ResultsNo data available now. +
Has SubproblemNo data available now. +
Has VersionNo data available now. +
Has abstractRelational Databases are used in most curr
Relational Databases are used in most current enterprise environments to store and manage data. The semantics of the data is not explicitly encoded in the relational model, but implicitly on the application level. Ontologies and Semantic Web technologies provide explicit semantics that allows data to be shared and reused across application, enterprise, and community boundaries. Converting all relational data to RDF is often not feasible, therefore we adopt an ontology-based access to relational databases. While existing approaches focus on read-only access, we present our approach OntoAccess that adds ontology-based write access to relational data. OntoAccess consists of the update-aware RDB to RDF mapping language R3M and algorithms for translating SPARQL/Update operations to SQL. This paper presents the mapping language, the translation algorithms, and a prototype implementation of OntoAccess.
a prototype implementation of OntoAccess. +
Has approachNo data available now. +
Has authorsMatthias Hert +, Gerald Reif + and Harald C. Gall +
Has conclusionIn this paper, we presented our approach O
In this paper, we presented our approach OntoAccess that enables the manipulation of relational data via SPARQL/Update. We introduced the update-aware RDB to RDF mapping language R3M that captures additional information about the database schema, in particular about integrity constraints. This information enables the detection of update requests that are invalid from the RDB perspective. Such requests cannot be executed by the database engine as they would violate integrity constraints of the database schema. The information can also be exploited to provide semantically rich feedback to the client. Therefore, the causes for the rejection of a request and possible directions for improvement can be reported in an appropriate format.
can be reported in an appropriate format. +
Has future workFuture work is planned for various aspects
Future work is planned for various aspects of OntoAccess. Further research needs to be done on bridging the conceptual gap between RDBs and the Semantic Web. Ontology-

based write access to the relational data creates completely new challenges on this topic with respect to read-only approaches. The presence of schema constraints in the database can lead to the rejection of update requests that would otherwise be accepted by a native triple store. A feedback protocol that provides semantically rich information about the cause of a rejection and possible directions for improvement plays a major role in bridging the gap. Other database constraints such as assertions have to be evaluated as well to see

if they can reasonably be supported in the mapping. Also, a more formal definition of the mapping language will be provided. Furthermore, we will extend our prototype implementation to support the SPARQL/Update MODIFY operation, SPARQL queries, and the just mentioned feedback protocol.
and the just mentioned feedback protocol. +
Has motivationNo data available now. +
Has platformNo data available now. +
Has problemNo data available now. +
Has relatedProblemNo data available now. +
Has vendorNo data available now. +
Has year2010 +
ImplementedIn ProgLangNo data available now. +
Proposes AlgorithmNo data available now. +
RunsOn OSNo data available now. +
TitleUpdating Relational Data via SPARQL/Update +
Uses FrameworkNo data available now. +
Uses MethodologyNo data available now. +
Uses ToolboxNo data available now. +